Detection in the Presence of AWGN Noise 2 – Continued

Lecture No. 15

Dr. Aoife Moloney

School of Electronics and Communications
Dublin Institute of Technology
Overview

This lecture will look at the following:

- Probability of error
- A generic optimum receiver
- Matched filter versus correlator
- Application to baseband binary signalling, bipolar
Probability of Error

- An error occurs in the detection process in the receiver whenever, while signal s_i has been sent, the received signal does not fall within the region Z_i in the signal space.

- If p_i is the probability for s_i to be transmitted, the probability of error P_e is the probability that the received signal r is not in the region Z_i, when s_i has been sent, averaged
over all \(i \), with the weight \(p_i \), giving:

\[
P_e = \sum_{i=1}^{M} p_i P(\text{r not in } Z_i | s_i \text{ sent})
\]

which can also be given as:

\[
1 - \sum_{i=1}^{M} p_i P(\text{r in } Z_i | s_i \text{ sent})
\]
which is given by:

\[1 - \sum_{i=1}^{M} p_i \int_{Z_i} f_r (r \mid s_i) \, dr \]

\(p_i \) can be replaced with \(1/M \) if the signals \(s_i \) are equiprobable.
Generic Optimum Receiver
Matched Filter vs Correlator

- As already mentioned, the impulse response of the linear filter matching the signal $s(t)$ of duration T can be written:

$$h(t) = s(T - t), \quad 0 \leq t \leq T$$

$$h(t) = 0, \quad \text{elsewhere}$$

The correlators in the above generic receivers can be replaced by filters matched to the signals $\Phi_i(t)$, i.e.:

$$h(t) = \Phi(T - t), \quad 0 \leq t \leq T$$

$$h(t) = 0, \quad \text{elsewhere}$$
For an input signal $x(t)$, the output of the filter matched to $\Phi(t)$ is identical at time T only to the output of a correlator performing the integration of the product $x(t)\Phi_i(t)$ over the duration of the symbol T.

Remember:

$$z(t) = r(t) \otimes h(t) = \int_{0}^{t} r(\tau)h(t - \tau)d\tau$$
So we now have:

\[z(t) = \int_{0}^{t} r(\tau) h(t - \tau) d\tau = \int_{0}^{t} r(\tau) \Phi_i [T - (t - \tau)] d\tau \]

This becomes, at \(t = T \):

\[z(t) = \int_{0}^{t} r(\tau) \Phi_i [\tau] d\tau \]

which is the correlation of \(r(t) \) with \(\Phi_i(t) \)
Application to Baseband Binary Signalling – Bipolar

• Let us consider the case of bipolar baseband signalling

\[
\begin{align*}
 s_1(t) &= A \\
 s_2(t) &= -A
\end{align*}
\]

\[
0 \leq t \leq T
\]

Here we have \(M = 2 \) signals and we choose \(N \leq M = 1 \). From the representation of signals outlined early in
Lecture 13 we get:

\[s_1(t) = s_{11} \Phi_1(t) \]
\[s_2(t) = s_{21} \Phi_1(t) \]

From the Gram–Schmidt orthogonalisation we have:

\[\Phi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} \]

\(E_1 \) is found from the equation for \(E_i \) given in Lecture 13, and is \(A^2T \), which combined with \(s_1(t) = A \) gives:

\[\Phi_1(t) = \sqrt{\frac{1}{T}}, \quad \text{for } 0 \leq t \leq T \]
We therefore have:

\[s_1(t) = A\sqrt{T}\Phi_1(t) = \sqrt{E_1}\Phi_1(t), \quad \text{and } s_{11} = \sqrt{E_1} \]

which gives:

\[s_2(t) = -A\sqrt{T}\Phi_1(t) = -\sqrt{E_1}\Phi_1(t), \quad \text{and } s_{21} = -\sqrt{E_1} \]

- We therefore have the 1–dimensional signal space shown below with the distance between the 2 signals being \(2\sqrt{E_1} \).
Detection/Probability of Error:
Let us apply our generic results on the detection of the transmitted signal in AWGN.
• As \(N = 1 \), and both signals have the same energy, the criterion simplifies to:

\[s_1 \text{ has been transmitted if } r_1 s_{k1} \text{ is a maximum when } k = i. \]

So we have:

- \(s_1 \) has been sent if \(\sqrt{E_1} r_1 \) is greater than \(-\sqrt{E_1} r_1 \), i.e. \(r_1 > 0 \)

- \(s_2 \) has been sent if \(-\sqrt{E_1} r_1 \) is greater than \(\sqrt{E_1} r_1 \), i.e. if \(r_1 < 0 \)
The probability of error can be written:

\[P_e = \sum_{i=1}^{M} p_i P(r_1 \text{ not in } Z_i \mid s_i \text{ sent}) \]

\[= p_1 P(r_1 < 0 \mid s_1 \text{ sent}) + p_2 P(r_2 > 0 \mid s_2 \text{ sent}) \]
As s_1 and s_2 are equiprobable, $p_1 = p_2 = 1/2$.

$$P_e = \frac{1}{2} \int_{-\infty}^{0} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 - s_{11})^2}{2\sigma^2} \right) \, dr_1$$

$$+ \frac{1}{2} \int_{0}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 - s_{21})^2}{2\sigma^2} \right) \, dr_1$$
Lecture No. 15: Detection in the Presence of AWGN Noise 2 – Continued

\[P_e = \frac{1}{2} \int_{\infty}^{0} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(-r_1 - s_{11})^2}{2\sigma^2} \right) (-dr_1) \]

\[+ \frac{1}{2} \int_{0}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 - s_{21})^2}{2\sigma^2} \right) dr_1 \]

\[P_e = \frac{1}{2} \int_{0}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(-r_1 - s_{11})^2}{2\sigma^2} \right) dr_1 \]

\[+ \frac{1}{2} \int_{0}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 - s_{21})^2}{2\sigma^2} \right) dr_1 \]
Lecture No. 15: Detection in the Presence of AWGN Noise 2 – Continued

\[
P_e = \frac{1}{2} \int_0^\infty \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(-r_1 - \sqrt{E_1})^2}{2\sigma^2} \right) \, dr_1
\]

\[
+ \frac{1}{2} \int_0^\infty \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 + \sqrt{E_1})^2}{2\sigma^2} \right) \, dr_1
\]

\[
P_e = \int_0^\infty \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(r_1 + \sqrt{E_1})^2}{2\sigma^2} \right) \, dr_1
\]

If we let:

\[u = \frac{(r_1 + \sqrt{E_1})}{\sigma}\]
we get the following expression for P_e:

$$P_e = \frac{1}{\sqrt{2\pi}} \int_{\frac{\sqrt{E_1}}{\sigma}}^{\infty} \exp \left(-\frac{u^2}{2} \right) du = Q \left(\frac{\sqrt{E_1}}{\sigma} \right) = Q \left(\sqrt{\frac{2E_1}{N_0}} \right)$$

Which is exactly what we got in Lecture 12!!

- A bipolar baseband receiver has the block diagram shown below:
Choose s_1 if $r_1 > 0$
Choose s_2 if $r_1 < 0$

Bipolar baseband receiver
Conclusion

This lecture has looked at the following:

• Probability of error
• A generic optimum receiver
• Matched filter versus correlator
• Application to baseband binary signally, bipolar